Revision Checklist: GCSE AQA Combined Science: Trilogy (Higher Tier)

	1. CELL BIOLOGY	<u>Subject</u> <u>Knowledge</u> (tick as appropriate)	<u>Practice</u> <u>Questions</u> (tick as appropriate)
а.	Eukaryotes &		
	prokaryotes		
b.	Animal & plant cells		
с.	Cell specialisation		
d.	Microscopy		
e.	The cell cycle		
f.	Stem cells		
g.	Diffusion		
h.	Exchange surfaces		
i.	Osmosis		
j.	Active transport		

	2. ORGANISATION	Knowledge	Practice
a.	Cells, tissues, organs &		
	systems		
b.	Enzymes		
c.	Human digestive system		
d.	The lungs		
e.	The heart		
f.	Blood vessels		
g.	Blood		
h.	Coronary heart disease		
i.	Health & disease		
j.	Risk factors for non-		
	communicable diseases		
k.	Cancer		
١.	Plant tissues		
m.	Transpiration &		
	translocation		
n.	Adaptations of plant cells		
о.	Rate of transpiration		

	3. INFECTION &	<u>Knowledge</u>	Practice
	RESPONSE		
a.	Communicable diseases		
b.	Viral diseases		
c.	Bacterial diseases		
d.	Fungal diseases		
e.	Protist diseases		
f.	Human defence systems		
g.	Vaccination		
h.	Antibiotics & painkillers		
i.	Discovery of drugs		
j.	Drug tests & trials		

	4. BIOENERGETICS	<u>Knowledge</u>	Practice
a.	Photosynthesis		
b.	Rate of photosynthesis		
с.	Uses of glucose		
d.	Aerobic & anaerobic		
	respiration		
e.	Body's response to		
	exercise		
f.	Metabolism		

	5. HOMEOSTASIS &	<u>Knowledge</u>	Practice
	RESPONSE		
a.	Homeostasis		
b.	The reflex arc		
с.	The endocrine system		
d.	Blood glucose control		
e.	Diabetes		
f.	Hormones in reproduction		
g.	The menstrual cycle		
h.	Contraception		
i.	Treating infertility		
j.	Thyroxine & adrenaline		

	6. INHERITANCE,	Knowledge	Practice
	VARIATION &		
	EVOLUTION		
a.	Sexual & asexual		
	reproduction		
b.	Meiosis		
c.	DNA structure		
d.	The genome		
e.	Alleles & inheritance		
f.	Inherited disorders		
g.	Sex determination		
h.	Variation		
i.	Selective breeding		
j.	Genetic engineering		
k.	Cloning		
Ι.	The theory of evolution		
m.	Speciation		
n.	Fossils		
о.	Extinction		
р.	Antibiotic resistant		
	bacteria		
q.	Classification of		
	organisms		

	7. ECOLOGY	Knowledge	Practice
a.	Communities &		
	interdependence		
b.	Abiotic & biotic factors		
c.	Adaptations		
d.	Food chains & webs		
e.	Predator-prey cycles		
f.	Carbon & water cycle		
g.	Biodiversity		
h.	Waste management		
i.	Land use & deforestation		
j.	Global warming		
k.	Maintaining biodiversity		

	<mark>8. ATOMIC</mark>	<u>Knowledge</u>	Practice
	STRUCTURE &		
	THE PERIODIC		
	TABLE		
a.	Elements,		
	compounds &		
	mixtures		
b.	Separating mixtures		
с.	Development of		
	atomic model		
d.	Mass & atomic		
	number		
e.	Relative atomic mass		
f.	Electronic structure		
g.	Groups & periods		
h.	Development of		
	periodic table		
i.	Metals & non-metals		
j.	Group 0 elements		
k.	Group 1 elements		
Ι.	Group 7 elements		

	<mark>9. BONDING,</mark>	<u>Knowledge</u>	Practice
	STRUCTURE & THE		
	PROPERTIES OF		
	<mark>MATTER</mark>		
a.	Ionic bonding		
b.	Covalent bonding		
c.	Dot & cross diagrams		
d.	Metallic bonding		
e.	States of matter		
f.	Properties of ionic		
	compounds		
g.	Properties of small		
	molecules		
h.	Polymers & giant covalent		
	structures		
i.	Properties of metals		
j.	Alloys		
k.	Diamond & graphite		
Ι.	Graphene & fullerenes		

	10. QUANTITATIVE	Knowledge	Practice
	CHEMISTRY		
a.	Balancing chemical		
	equations		
b.	Conservation of mass		
с.	Relative formula mass		
d.	Estimating uncertainty		
e.	Moles		
f.	Using moles to calculate		
	masses		
g.	Using moles to balance		
	equations		
h.	Limiting reactants		
i.	Concentration		

	11. CHEMICAL	Knowledge	Practice
	CHANGES		
a.	The reactivity series		
b.	Reduction & oxidation		
с.	Extracting metals by		
	reduction		
d.	Ionic & half equations		
e.	Reacting acids with		
	metals		
f.	Neutralisation of acids &		
	naming salts		
g.	рН		
h.	Strong & weak acids		
i.	Electrolysis of molten		
	ionic compounds		
j.	Electrolysis of aqueous		
	solutions		

	<mark>12. ENERGY</mark>		<u>Knowledge</u>	Practice	
		CHANGES			
а.	I	Exothermic 8	k		
	endo	thermic read	tions		
b.	Re	eaction profil	es		
с.	Calcula	ating energy	change		
		of reactions			

2

HE

	13. THE RATE & EXTENT OF	<u>Knowledge</u>	Practice
	CHEMICAL CHANGE		
a.	Calculating rate of		
	reaction		
b.	Factors affecting rate of		
	reaction		
c.	Collision theory &		
	activation energy		
d.	Catalysts		
e.	Reversible reactions		
f.	Le Chatelier's principle		
g.	Factors which affect		
	equilibrium		

	<mark>14. ORGANIC</mark>	Knowledge	Practice
	CHEMISTRY		
a.	Crude oil		
b.	Alkanes		
с.	Fractional distillation		
d.	Properties of		
	hydrocarbons		
e.	Combustion reactions		
f.	Alkenes		
g.	Addition reactions		
h.	Cracking		

	15. CHEMICAL	<u>Knowledge</u>	Practice
	<mark>ANALYSIS</mark>		
a.	Purity		
b.	Formulations		
c.	Paper chromatography		
d.	Tests for common gases		

The Periodic	Table of	Elements
--------------	----------	----------

1	2

1	2											3	4	5	6	7	0
				Key			1 H hydrogen 1										4 He helium 2
7	9		relativ	ve atom	ic mass] [11	12	14	16	19	20
Lithium	bendium		ato	mic sy	nboi							borno	carbon	nimonen	00000	funcine	Ne
3	4		atomic	(proton) numbei	r						5	6	7	8	9	10
23	24											27	28	31	32	35.5	40
Na	Mg											AI	Si	P	S	CI	Ar
sodium 11	magnesium 12											aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
39	40	45	48	51	52	55	56	59	59	63.5	65	70	73	75	79	80	84
ĸ	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium 19	calcium 20	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
85	88	89	91	93	96	[97]	101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Ŷ	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
rubidium 37	strontium 38	yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	46	silver 47	cadmium 48	indium 49	50	antimony 51	tellurium 52	53	54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	[209]	[210]	[222]
Cs	Ba	La*	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	Τl	Pb	Bi	Po	At	Rn
caesium 55	barium 56	lanthanum 57	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
[223] Fr	[226] Ra	[227] Ac*	[267] Rf	[270] Db	[269] Sg	[270] Bh	[270] Hs	[278] Mt	[281] Ds	[281] Rg	[285] Cn	[286] Nh	[289] Fl	[289] Mc	[293] Lv	[293] Ts	[294] Og
francium 87	radium 88	actinium 89	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	darmstadtium 110	roentgenium 111	copernicium 112	nihonium 113	flerovium 114	moscovium 115	livermorium 116	tennessine 117	oganesson 118

Knowledge 16. CHEMISTRY OF Practice THE ATMOSPHERE Composition of Earth's a. atmosphere b. **Evolution of Earth's** atmosphere The greenhouse effect c. Human activity & d. greenhouse gases e. **Global climate change** f. The carbon footprint **Atmospheric pollutants** g.

	<mark>17. USING</mark>	Knowledge	Practice
	RESOURCES		
а.	Using Earth's resources		
b.	Potable water		
с.	Waste water treatment		
d.	Low-grade copper ores		
e.	Life cycle assessment		
f.	Recycling		

* The Lanthanides (atomic numbers 58 - 71) and the Actinides (atomic numbers 90 - 103) have been omitted.

Page Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.

	18. ENERGY	<u>Knowledge</u>	Practice
a.	Energy stores		
b.	Changes in energy		
c.	Kinetic energy		
d.	Gravitational & elastic		
	potential energy		
e.	Specific heat capacity		
f.	Power & work done		
g.	Conduction		
h.	Unwanted energy		
	transfers		
i.	Efficiency		
j.	Energy resources		
	(renewable & non-		
	renewable)		
k.	Energy resources		
	(environmental		
	impact)		

	19. ELECTRICITY	Knowledge	Practice
a.	Circuit diagram symbols		
b.	Charge & current		
c.	Current, resistance &		
	potential difference		
d.	I-V characteristic curves		
e.	LDR & thermistor		
f.	Series & parallel circuits		
g.	D.C. & A.C.		
h.	Mains electricity		
i.	Power in circuits		
j.	Energy transfers in		
	electrical appliances		
k.	The national grid		
Ι.	Role of transformers		

	20. PARTICLE MODEL	Knowledge	Practice
	OF MATTER		
а.	Density		
b.	Changes of state		
c.	Internal energy		
d.	Specific heat capacity		
	(again)		
е.	Specific latent heat		
f.	Particle motion in gases		

	21. ATOMIC	Knowledge	Practice
	STRUCTURE		
a.	Structure of an atom		
b.	Mass number, atomic		
	number & isotopes		
c.	Development of atomic		
	model		
d.	Radioactive decay		

e.	Properties of nuclear	
	radiation	
f.	Nuclear equations	
g.	Half life	
h.	Contamination &	
	irradiation	

	22. FORCES	Knowledge	Practice
a.	Scalars & vectors		
b.	Contact & non-contact		
	forces		
с.	Gravity & weight		
d.	Resultant forces		
e.	Vector diagrams		
f.	Work done		
g.	Springs & elasticity		
h.	Distance & displacement		
i.	Speed & velocity		
j.	Distance-time graphs		
k.	Acceleration		
Ι.	Velocity-time graphs		
m.	Terminal velocity		
n.	Newton's first law		
о.	Newton's second law &		
	inertia		
р.	Newton's third law		
q.	Stopping distance &		
	reaction time		
r.	Factors affecting braking		
	distance		
s.	Momentum		

	23. WAVES	<u>Knowledge</u>	Practice
a.	Transverse & longitudinal		
	waves		
b.	Properties of waves		
c.	Refraction		
d.	Ray diagrams (refraction)		
e.	Waves for detection &		
	exploration		
f.	Electromagnetic (EM)		
	spectrum		
g.	Radio waves		
h.	Risks of EM radiation		
i.	Uses of EM waves		

Page | 5

PHYSIC

	24. MAGNETISM &	<u>Knowledge</u>	Practice
	ELECTRO-		
	MAGNETISM		
a.	Bar magnets		
b.	Magnetic fields		
c.	Electromagnets		
d.	The motor effect &		
	Fleming's left-hand rule		
e.	Electric motors		

EQUATIONS (not given in exam)	
Weight = mass x gravitational field strength	W = m g
Work done = force x distance	W = F s
Force (applied to a spring) = spring constant x	F = k e
extension	
Distance = speed x time	s = v t
Acceleration = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
Resultant force = mass x acceleration	F = m a
Momentum = mass x velocity	p = m v
Kinetic energy = 0.5 x mass x (speed) ²	$E_{\rm K} = \frac{1}{2} \mathrm{m}\mathrm{v}^2$
Gravitational potential energy = mass x	E _P = m g h
gravitational field strength x height	
Power = energy transferred	$P = \frac{E}{t}$
Power = $\frac{\text{work done}}{\text{time}}$	$P = \frac{W}{t}$
Efficiency = $\frac{\text{useful energy out}}{\text{total energy in}}$	
Efficiency = useful power out total power in	
Wave speed = frequency x wavelength	$v = f \lambda$
Charge = current x time	Q = I t
Potential difference = current x resistance	V = I R
Power = potential difference x current	P = V I
Power = (current) ² x resistance	$P=I^2\;R$
Energy transferred = charge x potential	E = Q V
difference	
Density = $\frac{\text{mass}}{\text{volume}}$	$\rho = \frac{m}{v}$

PRACTICALS	<u>Knowledge</u>
RP 1 : "Make use of a light microscope to	
observe. draw and label plant and	
animal cells."	
RP 2 : "Investigate the effect of different	
concentrations of salt or sugar solutions	
on the mass of plant tissue."	
RP 3 : "Make use of reagents to test for	
the presence of different carbohydrates,	
lipids and proteins."	
RP 4: "Investigate the effect of pH on the	
rate of reaction of amylase."	
RP 5: "Investigate the effect of light	
intensity on the rate of photosynthesis	
of an aquatic plant."	
RP 6 : "Investigate the effect of a specific	
factor on human reaction time."	
RP 7 : "Use sampling techniques to	
investigate the effect of a specific factor	
on the distribution of a species in a	
habitat."	
RP 8: "Prepare a pure, dry sample of a	
soluble salt from an insoluble oxide or	
RP 9: "Investigate the electrolysis of	
aqueous solutions (a hypothesis must	
PP 10: "Investigate factors affecting	
temperature change when reacting	
solutions together"	
RP 11a: "Investigate how concentration	
affects the rate of reaction by measuring	
the volume of gas produced (a	
hypothesis must be formed and	
developed)."	
RP 11b : "Investigate how concentration	
affects the rate of reaction by observing	
a colour change (a hypothesis must be	
formed and developed)."	
RP 12: "Use paper chromatography to	
separate coloured substances and	
determine R _f values."	
RP 13 : "Identify pH and amount of	
dissolved solids in water samples from	
different sources, and use distillation to	
purify them."	
RP 14 : "An investigation to determine	
the specific heat capacity of one or more	
materials."	
RP 15a : "Investigate how the length of a	
wire at constant temperature affects the	
resistance of electrical circuits."	
KF 15D: "Investigate how combinations	
or resistors in series and parallel affect	
DD 16: "Use sizewit diagrams to	
nr 10. Use circuit diagrams to	
investigate the i-v thatatteristics of a	

filament lamp, a diode and a resistor at	
constant temperature."	
RP 17 : "Determine the densities of	
regular and irregular solid objects and	
liquids."	
RP 18 : "Investigate the relationship	
between force and extension of a	
spring."	
RP 19: "Investigate separately how	
varying the force and mass of an object	
affect its acceleration."	
RP 20: "Measure the frequency,	
wavelength and speed of waves in a	
ripple tank, and waves in a solid."	
RP 21: "Investigate how the amount of	
infrared radiation absorbed and	
radiated depends on the type of	
surface."	

ASSESSMENTS	Duration	<u>Marks</u>	<u>Topics</u>
Biology Paper 1	1 hour	70	Topics
	15 min	marks	1-4
Biology Paper 2	1 hour	70	Topics
	15 min	marks	5 - 7
Chemistry Paper 1	1 hour	70	Topics
	15 min	marks	8 – 12
Chemistry Paper 2	1 hour	70	Topics
	15 min	marks	13 - 17
Physics Paper 1	1 hour	70	Topics
	15 min	marks	18 – 21
Physics Paper 2	1 hour	70	Topics
	15 min	marks	22 - 24